Микроталасни филтри са локализованим импулсним одзивом у техници микротракастих водова Докторска теза

Кандидат: мр Милка Потребић

Ментор: **др Дејан Тошић, ванр. проф.**

Београд, 2009.

 Истражити реализације микроталасних филтара пропусника опсега са Rhodesовом апроксимацијом

Циљ

- Предложити оптималну реализацију у техници микротракастих водова
- Истовремено обезбедити селективност амплитудске карактеристике, импулсни одзив локализован у времену, и што мање заузеће на штампаној плочици

Актуелност микроталасних филтара

- Микроталасни филтри се користе у практично свим савременим радарским системима и комуникационим системима
- "Focus on Filters", *IEEE Microwave Magazine*, vol. 8, no. 2, April 2007.
- "All the World is a Filter", *IEEE Microwave Magazine*, vol. 8, no. 5, Oct. 2007.

Rhodes-ова апроксимација

Rhodes је предложио апроксимацију за импулсни одзив, односно за одзив у временском домену

Импулсни одзив прототипа за полиномску Rhodes-ову апроксимацију (RhA)

5

Релативно слабљење импулсног

одзива

n	2	4	6	
A_1 [dB]	27,29	32,36	35,63	
<i>A</i> ₂ [dB]	54,58	64,72	71,26	
	$(2A_1 = 54, 58)$	$(2A_1 = 64,72)$	$(2A_1 = 71, 26)$	
ϑ_{\max}	1,55	2,8	3,39	
ϑ_1	7,84	10,29	11,67	
ϑ_2	14,13	17,78	19,95	
$\left(\vartheta_1 - \vartheta_{\max}\right)$	6,29	7,49	8,28	
$(\vartheta_2 - \vartheta_1)$	6,29	7,49	8,28	

Импулсни одзив прототипа

Релативно слабљење импулсног одзива прототипа

LC-филтар пропусник опсега (RhA)

Униформни губици, коначне нуле

$$f_0 = 1 \text{ GHz}$$

 $B_{\Delta} = \Delta F_{3\rm dB} / f_0 = 0.05$

	RhA	Q-RhA	RhA-0
A_1 [dB]	32,42	38,79	30,39
	64,89	77,65	60,86
$A_2 [ub]$	$(2A_1 = 64, 84)$	$(2A_1 = 77,58)$	$(2A_1 = 60,78)$
$t_{\rm max}$ [ns]	13,5	12,5	12,5
$t_1[ns]$	48,5	47,5	44,5
t_2 [ns]	83,5	82,5	76,5
$(t_1 - t_{\max})[ns]$	35	35	32
$(t_2 - t_1)[ns]$	35	35	32

Филтри пропусници опсега са спрегнутим резонаторима

- Синтеза и реализација филтара са спрегнутим резонаторима са релативно уским пропусним опсегом [Dishal1951], [Dishal1965]
- Универзални поступак синтезе омогућује да се нађу све потребне геометријске димензије филтра без обзира на циљну технологију реализације помоћу
 - коефицијената спреге резонатора Шири

Ширина пропусног опсега

- Q-фактора резонатора Прилагођење у пропусном опсегу
- > централне учестаности филтра

Спецификација филтра

- Ред филтра: 4
- Релативна ширина пропусног опсега: $B_{\Delta} = 0.08$
- Централна учестаност: $f_0 = 2 \text{ GHz}$
- Максимално дозвољено слабљење на централној учестаности: 1,5dB
- Највеће неприлагођење у пропусном опсегу: <u>-14 dB</u>
- Облик релативног слабљења импулсног одзива потискивање бочних листова и еквидистантност растојања максимума листова дате **Rhodes**-овим прототипом
- Једнаке номиналне импедансе приступа: $Z_0 = 50 \Omega$
- Супстрат: **Rogers RO4003C**
- Минимална површина заузећа штампане плочице
- Резолуција расположиве технологије: 50 µm

Алгоритам за реализацију филтара са локализованим импулсним одзивом (1)

- Утврдити параметре одабраног супстрата за прављење лабораторијског прототипа
- Одредити минимални *Q*-фактор неоптерећеног резонатора на основу максималног дозвољеног слабљења на централној учестаности
- Одредити симулацијом криву зависности *Q*фактора неоптерећеног резонатора у функцији димензија резонатора на одабраном супстрату за централну учестаност филтра

Одређивање *Q*-фактора оптерећеног/неоптерећеног резонатора

редни

Алгоритам за реализацију филтара са локализованим импулсним одзивом (2)

- Израчунати коефицијенте спреге и *Q*-факторе оптерећених резонатора
- Израчунати S-параметре филтра из матрице спрега и Q-фактора оптерећених резонатора, испитати осетљивост одзива филтра (и у фреквенцијском и временском домену) на коефицијенте спреге и Q-факторе
- Одредити симулацијом криву зависности коефицијената спреге у функцији ширине процепа између два усамљена резонатора

Одређивање коефицијента спреге два резонатора

Алгоритам за реализацију филтара са локализованим импулсним одзивом (3)

- Одредити симулацијом криву зависности *Q*фактора оптерећеног резонатора у функцији релативног положаја уводника у односу на резонатор; крива се снима за централну учестаност филтра
- Оптимизовати геометријске димензије филтра; као критеријум оптимизације усвојити одзив *LC*-филтра са униформним **губицима** (*Q* = 180 на централној учестаности филтра)

Здружена оптимизација временског и фреквенцијског одзива

Алгоритам за реализацију филтара са локализованим импулсним одзивом (4)

- Образовати модел у симулатору за нумеричку анализу брзопроменљивих електромагнетских поља (3D EM модел) коришћењем софтверских алата као што су WIPL-D Pro [WIPL-D] или IE3D [Zeland]. Испитати да ли је спецификација филтра задовољена
- Подесити геометријске димензије филтра "port-tuning" оптимизација
- Ако спецификација није задовољена, кориговати коефицијенте спреге између суседних резонатора

"Port tuning" оптимизација

Алгоритам за реализацију филтара са локализованим импулсним одзивом (5)

- Прецизније подесити импулсни одзив незнатном променом ширине резонатора
- Прецизније обликовати импулсни одзив, односно бочне листове његовог релативног слабљења; подесити облик уводника (tapered line) и положај металног поклопца изнад структуре
- Направити лабораторијски прототип

Општа шематска представа филтра са спрегнутим резонаторима помоћу импедансних инвертора и импеданси које нису у спрези

Матрица система

Филтар са паралелно спрегнутим полуталасним резонаторима (РС λ/2)

Модификовани чешљасти филтар (PseudoCom)

Модификовани чешљасти филтар (PseudoCom)

Филтар са укосницама (Hairpin)

M. M. Potrebić and D. V. Tošić, "Selective bandpass filter with concentrated impulse response," Microwave and Optical Technology Letters, Nov. 2008.

Филтар са укосницама (Hairpin)

i	w_i [mm]	$d_{i,i+1}$ [mm]
1	0,3	0,2
2	1,0	0,65
3	1,15	0,5
4	1,1	0,2
5	0,6	0,15
6	0,2	

 $\frac{l = 22,85 \text{ mm}}{d_0 = 1,6 \text{ mm}} \qquad \frac{l_0 = 0,5 \text{ mm}}{w_{50\Omega} = 1,1 \text{ mm}} \qquad 27$

Поређење карактеристика филтара PC λ/2, Hairpin, PseudoCom

Реализација	LC	$PC \lambda/2$	PseudoCom	Hairpin
A_{l} [dB]	32,5	40,3	40,1	38
A_2 [dB]	65	78,7	71,6	74
$t_{\rm max}$ [ns]	4,33	4,67	4,33	4,5
<i>t</i> ₁ [ns]	15,5	14,67	15	16,4
t_2 [ns]	26,67	24,67	24,5	28,3
$(t_1 - t_{\max})[ns]$	11,17	10,00	10,67	11,9
$(t_2 - t_{\max})[ns]$	11,17	10,00	9,50	11,9
$P_1 [\mathrm{mm}^2]$	N/A	809,4	422	353
$P_2[\mathrm{mm}^2]$	N/A	993,3	591	477

Интердигитални филтар

Интердигитални филтар

Оптималне димензије			
w _i [mm]	$d_{i,i+1}$ [mm]	<i>l_i</i> [mm]	
1,6	1,05	20,4	
2,15	0,6	20,4	
1,8	0,3	20,4	
1,5		20,4	
$w_0 = 0.6 \mathrm{mm}$ $w_5 = 0.3 \mathrm{mm}$			
$l_0 = l_5 = 20,4 \mathrm{mm}$			
$d_{01} = 0,225 \text{ mm}$ $d_{45} = 0,075 \text{ mm}$			

30

Чешљасти филтар (Combline)

Оптималне димензије		
w_i [mm] $d_{i,i+1}$ [mm]		
2,1	0,55	
2,1	0,25	
2,1	0,05	
1,8		
$l_1 = l_2 = l_3 = l_4 = 5.7 \mathrm{mm}$		

 $l_{t1} = 1,35 \,\mathrm{mm}$ $l_{t4} = 5,05 \,\mathrm{mm}$

32

Чешљасти филтар (Combline)

Поређење карактеристика филтара LC, Hairpin, Interdigital, Combline

Реализација	LC	Hairpin	Interdigital	Combline
$f_0[GHz]$	2	1,98	1,94	1,87
B_{Δ}	0,08	0,082	0,085	0,089
$A_{21}(f_0)[dB]$	0	2	2,85	3,4
A_{l} [dB]	32,5	$A_2/A_1 =$	$A_2/A_1 =$	$A_2/A_1 =$
A_2 [dB]	65	1.86	1.94	1.86
$t_{\rm max}$ [ns]	4,33	4,33	3,83	3,83
$t_1[ns]$	15,5	15	11,33	13,17
t_2 [ns]	26,67	23,5	18,83	22,17
$(t_1 - t_{\max})[ns]$	11,17	10,67	7,5	9,34
$(t_2 - t_{\max})[ns]$	11,17	8,5	7,5	9
$P_1 [\mathrm{mm}^2]$	N/A	353,03	201,6	85,025
$P_2 [\mathrm{mm}^2]$	N/A	476,93	304,8	(149,4)

34

Коришћена технологија и запажања при мерењу

 FP-21TP Precision - MITS Electronics (резолуција машине 50 µm)

Коришћена технологија и запажања при мерењу

- Анализатора мрежа Agilent E5062A -Agilent Technologies (2-портна калибрација - калибрациони кит 85052A)
- Провера параметара коришћеног супстрата (RO4003C)

- одређивање оптималне реализације за дату спецификацију и технолошка ограничења

37

- експериментална верификација мерењем на лабораторијским прототиповима анализираних реализација
- нов лабораторијски прототип филтра
- са локализованим импулсним одзивом у времену
- уског пропусног опсега
- малог заузећа штампане плочице

Предложен је нов метод за пројектовање планарних селективних микроталасних филтара

Закључак (2)

Предложен је нов алгоритам синтезе филтра са спрегнутим резонаторима, помоћу импедансних инвертора и импеданси које нису у спрези, којом се може представити и филтар пропусник ниских учестаности и филтар пропусник опсега учестаности

Закључак (3)

- Подручја примене истраживачких резултата обухватају комуникационе и радарске системе
- Ограничења истраживања се огледају у претпоставци да је функција преноса полиномска и да је реализација филтра планарна Додатно ограничење је расположива технологија за израду прототипа, односно резолуција од 50 µm, што ограничава минималну ширину процепа, и минималну ширину траке, односно реализације за више микроталасне учестаности

Даљи правци развоја

- Могућа даља истраживања би подразумевала анализу реализација општије класе селективних микроталасних филтара са несуседним спрегама резонатора, који би имали коначне нуле у преносној функцији, и очекивану већу селективност
- Истраживање реализација тродимензионалних структура, као и утицаја оклапања, такође чине правце могућих даљих истраживања